Transformadores de tensión

Transformadores de tensión

Transformadores de tensión

CARACTERISTICAS PARTICULARES DE LOS TRANSFORMADORES DE TENSION

Estos se conectan en derivación, entre fases (en tensiones bajas y medias) o entre fase y tierra cualquiera sea la tensión.

La conexión fase tierra es muy útil, ya que entrega tensiones que permiten reconstruir tanto las tensiones simples como las compuestas, mientras que las tensiones obtenidas de las conexiones fase fase no permiten reconstruir las tensiones fase tierra, y bajo circunstancias especiales (por ejemplo cuando se desea conocer el contenido armónico) es importante poder conocer las tensiones simples.

En ciertos casos se considera como mas económica la solución con dos transformadores conectados en V, aunque esto es cierto la economía no debe buscarse en diseños que generan posibles dificultades futuras de trabajo, es mas lógico que el esfuerzo económico se haga en otras direcciones (quizás cuestionándose si no es posible realizar menos puntos de medición, pero los que se hacen deben ofrecer solución a todo problema que pueda aparecer).

Los transformadores de tensión funcionan prácticamente a tensión constante, a inducción constante, y no presentan efectos de saturación tan notables como los transformadores de corriente.

La tensión nominal primaria coincide con la tensión nominal del sistema , o si conectados fase tierra será la tensión nominal del sistema sobre raíz de 3.

La prestación del transformador no esta condicionada a la carga que efectivamente se alimentara.

Debe observarse que en cambio la precisión de la medida puede ser afectada por los cables de conexión (sección y longitud) y la corriente que por ellos circula, cantidad de aparatos que alimentan.

Es entonces conveniente separar los circuitos por sus funciones en un lugar próximo al núcleo.

Como en la red se pueden presentar condiciones de sobretension en relación al estado del neutro de la red, y la presencia de fallas, el transformador debe soportar estas situaciones.

Factor de tensión es la relación respecto de la tensión nominal primaria, del valor mas elevado de tensión con el cual se pretende que el transformador satisfaga prescripciones de calentamiento, y otras eventuales prescripciones.

Esta característica esta asociada al tiempo de funcionamiento (limitado o no) y se selecciona teniendo en cuenta la forma de conexión del arrollamiento primario y la condición del neutro de la red.

Para transformadores conectados fase fase esta factor es 1.2, para transformadores que se conectan fase tierra en redes con neutro aislado se requiere 1.9 por 8 horas, si la falla se elimina en tiempo breve en cambio 30 segundos.

Relación de transformación.

Prestación.

Sobretensiones permanentes, fallas.

Transformadores de tipo inductivo y capacitivo.

Caída en los cables, error.

Aprovechamiento para algún servicio auxiliar.

 

 

Current_transformer

Current Transformer

Current Transformer

 

A current transformer (CT) is a transformer that is used to produce an alternating current (AC) in its secondary which is proportional to the AC current in its primary. Current transformers, together with voltage transformers (VTs) or potential transformers (PTs), which are designed for measurement, are known as instrument transformers.

When a current is too high to measure directly or the voltage of the circuit is too high, a current transformer can be used to provide an isolated lower current in its secondary which is proportional to the current in the primary circuit. The induced secondary current is then suitable for measuring instruments or processing in electronic equipment. Current transformers also have little effect on the primary circuit. Often, in electronic equipment, the isolation between the primary and secondary circuit is the important characteristic.

Current transformers are used in electronic equipment and are widely used for metering and protective relays in the electrical power industry.

 

Like any transformer, a current transformer has a primary winding, a core and a secondary winding, although some transformers, including current transformers, use an air core. In principle, the only difference between a current transformer and a voltage transformer (normal type) is that the former is fed with a ‘constant’ current while the latter is fed with a ‘constant’ voltage, where ‘constant’ has the strict circuit theory meaning.

The alternating current in the primary produces an alternating magnetic field in the core, which then induces an alternating current in the secondary. The primary circuit is largely unaffected by the insertion of the CT. Accurate current transformers need close coupling between the primary and secondary to ensure that the secondary current is proportional to the primary current over a wide current range. The current in the secondary is the current in the primary (assuming a single turn primary) divided by the number of turns of the secondary. In the illustration on the right, ‘I’ is the current in the primary, ‘B’ is the magnetic field, ‘N’ is the number of turns on the secondary, and ‘A’ is an AC ammeter.

Typically current transformers consist of a silicon steel ring core wound with many turns of copper wire as shown in the right illustration. The conductor carrying the primary current is then passed through the ring; the CT’s primary therefore consists of a single ‘turn’. The primary ‘winding’ may be a permanent part of the current transformer, with a heavy copper bar to carry current through the core. Window-type current transformers (aka zero sequence current transformers, or ZSCT) are also common, which can have circuit cables run through the middle of an opening in the core to provide a single-turn primary winding. To assist accuracy, the primary conductor should be central in aperture.

CTs are specified by their current ratio from primary to secondary. The rated secondary current is normally standardized at 1 or 5 amperes. For example, a 4000:5 CT secondary winding will supply an output current of 5 amperes when the primary winding current is 4000 amperes. This ratio can also be used to find the impedance or voltage on one side of the transformer, given the appropriate value at the other side. For the 4000:5 CT, the secondary impedance can be found as ZS = NZP = 800ZP, and the secondary voltage can be found as VS = NVP = 800VP. In some cases, the secondary impedance is referred to the primary side, and is found as ZS’ = N2ZP. Referring the impedance is done simply by multiplying initial secondary impedance value by the current ratio. The secondary winding of a CT can have taps to provide a range of ratios, five taps being common.

Shapes and sizes can vary depending on the end user or switch gear manufacturer. Low-voltage single ratio metering current transformers are either a ring type or plastic molded case.

Split-core current transformers either have a two-part core or a core with a removable section. This allows the transformer to be placed around a conductor with the minimum disturbance. Split-core current transformers are typically used in low current measuring instruments, often portable, battery-operated, and hand-held (see illustration lower right).

 

The accuracy of a CT is affected by a number of factors including:

  • Burden
  • Burden class/saturation class
  • Rating factor
  • Load
  • External electromagnetic fields
  • Temperature
  • Physical configuration
  • The selected tap, for multi-ratio CTs
  • Phase change
  • Capacitive coupling between primary and secondary
  • Resistance of primary and secondary
  • Core magnetizing current

For the IEC standard, accuracy classes for various types of measurement are set out in IEC 61869-1, Classes 0.1, 0.2s, 0.2, 0.5, 0.5s, 1 and 3. The class designation is an approximate measure of the CT’s accuracy. The ratio (primary to secondary current) error of a Class 1 CT is 1% at rated current; the ratio error of a Class 0.5 CT is 0.5% or less. Errors in phase are also important especially in power measuring circuits, and each class has an allowable maximum phase error for a specified load impedance.

Current transformers used for protective relaying also have accuracy requirements at overload currents in excess of the normal rating to ensure accurate performance of relays during system faults. A CT with a rating of 2.5L400 specifies with an output from its secondary winding of 20 times its rated secondary current (usually 5 A × 20 = 100 A) and 400 V (IZ drop) its output accuracy will be within 2.5 percent.

Burden

The secondary load of a current transformer is termed the “burden” to distinguish it from the primary load.

The burden in a CT metering circuit is the largely resistive impedance presented to its secondary winding. Typical burden ratings for IEC CTs are 1.5 VA, 3 VA, 5 VA, 10 VA, 15 VA, 20 VA, 30 VA, 45 VA and 60 VA. ANSI/IEEE burden ratings are B-0.1, B-0.2, B-0.5, B-1.0, B-2.0 and B-4.0. This means a CT with a burden rating of B-0.2 can tolerate an impedance of up to 0.2 Ω on the secondary circuit before its accuracy falls outside of its specification. These specification diagrams show accuracy parallelograms on a grid incorporating magnitude and phase angle error scales at the CT’s rated burden. Items that contribute to the burden of a current measurement circuit are switch-blocks, meters and intermediate conductors. The most common cause of excess burden impedance is the conductor between the meter and the CT. When substation meters are located far from the meter cabinets, the excessive length of cable creates a large resistance. This problem can be reduced by using thicker cables and CTs with lower secondary currents (1A), both of which will produce less voltage drop between the CT and its metering devices.

Knee-point core-saturation voltage

The knee-point voltage of a current transformer is the magnitude of the secondary voltage above which the output current ceases to linearly follow the input current within declared accuracy. In testing, if a voltage is applied across the secondary terminals the magnetizing current will increase in proportion to the applied voltage, until the knee point is reached. The knee point is defined as the voltage at which a 10% increase in applied voltage increases the magnetizing current by 50%. For voltages greater than the knee point, the magnetizing current increases considerably even for small increments in voltage across the secondary terminals. The knee-point voltage is less applicable for metering current transformers as their accuracy is generally much higher, but constrained within a very small range of the current transformer rating, typically 1.2 to 1.5 times rated current. However, the concept of knee point voltage is very pertinent to protection current transformers, since they are necessarily exposed to fault currents of 20 to 30 times rated current.

Phase shift

Ideally, the primary and secondary currents of a current transformer should be in phase. In practice, this is impossible, but, at normal power frequencies, phase shifts of a few tenths of a degree are achievable, while simpler CTs may have phase shifts up to six degrees. For current measurement, phase shift is immaterial as ammeters only display the magnitude of the current. However, in wattmeters, energy meters, and power factor meters, phase shift produces errors. For power and energy measurement, the errors are considered to be negligible at unity power factor but become more significant as the power factor approaches zero. At zero power factor, all the measured power is due to the current transformer’s phase error. The introduction of electronic power and energy meters has allowed current phase error to be calibrated out.

Special types

Specially constructed wideband current transformers are also used (usually with an oscilloscope) to measure waveforms of high frequency or pulsed currents within pulsed powersystems. Unlike CTs used for power circuitry, wideband CTs are rated in output volts per ampere of primary current.

If the burden resistance is much less than inductive impedance of the secondary winding at the measurement frequency then the current in the secondary tracks the primary current and the transformer provides a current output that is proportional to the measured current. On the other hand, if that condition is not true, then the transformer is inductive and gives a differential output. The Rogowski coil uses this effect and requires an external integrator in order to provide a voltage output that is proportional to the measured current.

 

Company

Esitaş Elektrik Sanayi ve Ticaret A.Ş.  is established in 1984 in Istanbul, Turkey, as the parent company of the group with more than 350 employees in the medium voltage transformer industry, produces and sells indoor/outdoor type Transformers, dry cast resin type indoor/outdoor M.V. Current Transformer, M.V. Voltage Transformer, Support type Transformer, Outdoor Double pole transformer or Single Pole and Fused type transformer, L.V. Current Transformer(Bus bar, Toroidal Transformer, Ring and Cable type Transformer, Bus Bar, Capacitive Layer and Bushing type instrument transformer, Post insulator, Epoxy Insulator, Bushing and Capacitive insulator and other customer designed products upon request.

Esitaş Elektrik is a supplier of many electricity utilities all around the world and to various branches of multinational market leaders in the industry like ABB, GE, Schneider, Siemens and also leader power panel/switchgear manufacturers in the local markets.

 

PT. Esitas Pacific is manufacturing plant of the group, located in Jakarta, Indonesia with the same product range, founded to serve the customers more conveniently in Asia-Pacific zone and to further furnish its existence in the world market.

 

Esitaş exports to more than 60 countries in the world market including France, Spain, Sweden, Germany, Greece, Finland, Poland, Italy, United Kingdom, Russia,  Romania, Albania, Belarus, Bulgaria, Croatia, Denmark, Hungary, Portugal, Serbia, Kosovo, Lithuania, Bosnia and Herzegovina, Estonia, Macedonia, Montenegro, Turkey, Ukraine, Cyprus, Azerbaijan, Afghanistan, Bangladesh, Burma(Myanmar), Cambodia, Georgia, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Kuwait, Kyrgyzstan, Lebanon, Malaysia, Pakistan, Palestine, Philippines, Qatar, Saudi Arabia, Singapore, South Korea, Syria, Thailand, Tunisia, Turkey, Turkmenistan, Vietnam, Yemen, Senegal, Nigeria, Equador, Egypt, Algeria, Morocco, Australia, Argentina, Bolivia, Chile, Colombia, Costa Rica, Cuba, República Dominicana, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panamá, Paraguay, Peru, Uruguay, Venezuela

 

With its mission of continuously improving the existent quality and introducing innovations in order to increase the efficiency for customers, Esitaş Group is your partner in the world energy market.

 

MILESTONES

1984      Established in Istanbul, Turkey

1985      Certification completed for Turkey Utility

1992      36kV Indoor CT/VT Type Tested in CESI

1994      First Exports to Middle-East and Europe

1997      36kV Oil type CT Type Tested in CESI

2007      Developed special software for CT / VT

2008      Established PT. Esitas Pacific for APAC

2009      Installed Injection Casting System

2011      Installed Automated Resin Preparation System

2016      Broke his production records, manufactured 6000 MV transformers/month

Трансформатор тока

Transformador de corriente

Transformador de corriente

Estos son diseñados para suministrar la corriente adecuada a los instrumentos de medición como a los amperímetros y wattimetros así como a los equipos de protección como los relevadores. El devanado primario del transformador de corriente se conecta en serie con el circuito donde circula la corriente que se desea medir, mientras que los instrumentos de medición se conectan en serie a su devanado secundario.

 

Circuito Magnético

El circuito eléctrico esta constituido por los devanados (primario y secundario), estos son realizados sobre horma y cubierta de cinta aislante, tratadas al vacío, impregnadas de barniz aislante y cocido. La función que desempeñan cada uno de los devanados, da origen al funcionamiento del transformador y esto es posible con el uso de la corriente alterna.

Sistema de aislamiento

Los transformadores están constituidos mediante una serie de elementos aislantes, los
cuales son:
Cartón prensado
Papel kraft normal o tratado.
Papel manila y corrugado.
Cartón prensado de alta densidad.
ING. PEREZ Pedro A., Tercera Edición; Transformadores de Distribución Teoría, Calculo,
Construcción y Pruebas, Pág. 12-13.

Collares de cartón prensado y aislamientos finales.
Partes de cartón prensado laminados.
Esmaltes y barnices.
Recubrimientos orgánicos.
Porcelanas.
Recubrimientos de polvo epóxico.
Madera de maple.
Fibra vulcanizada
Algodón, hilos, cintas.
Plásticos, telas, cintas adhesivas y cintas de fibra de vidrio.
Fluido líquido dieléctrico.
Este sistema tiene como finalidad aislar los devanados entre si y a tierra, es por esta
razón que el sistema de aislamiento debe cumplir con ciertas cualidades.

1. Cualidad para soportar los voltajes relativamente elevados.
2. Cualidad para soportar esfuerzos mecánicos y térmicos.
3. Cualidad para prevenir excesivas acumulaciones de calor.

Tanques y accesorios

Los transformadores que emplean refrigeración por líquido deben tener necesariamente sus núcleos y devanados inmersos en tanques, entre una temperatura de menos 5 °C a una máxima de 105 °C.

Los transformadores no sólo son provistos con protecciones contra las descargas, también han de considerarse las protecciones contra sobre intensidades las cuales le dan los fusibles y disyuntores, estos abren el circuito cuando la corriente es superior a la corriente nominal del transformador.

Importancia

La importancia de realizar este tipo de pruebas es garantizar un sistema eléctrico confiable, para el desarrollo de este tipo de prueba se utilizará las normas técnicas ANSI, IEEE y la Norma Técnica Ecuatoriana INEN, las cuales están dirigidas a las pruebas en transformadores de distribución y potencia.

Según la Norma Técnica Ecuatoriana NTE-INEN 2111:2004 en su primera revisión en la sección de transformadores de distribución y pruebas eléctricas recomienda realizar la prueba de aislamiento con MEGGER para transformadores de distribución y las disposiciones generales son las siguientes:

  1. Las pruebas pueden hacerse a los transformadores a cualquier temperatura ambiente comprendida entre 10°C y 40°C y a aquellos con enfriamiento por agua (si se requiere) a cualquier temperatura que no exceda de 25°C.
  2. Todos los componentes y accesorios externos que puedan afectar el funcionamiento del transformador deben estar colocados en su lugar.
  3.  En los devanados con derivaciones a menos que se acuerde otra cosa entre fabricante y comprador, y a menos que la prueba específicamente requiera otra cosa, las pruebas deben efectuarse en la derivación principal

 

La Norma Técnica American National Standards Institute (ANSI) C.57.12.00, determina los niveles y la clase de aislamiento de acuerdo a la temperatura para los transformadores en aceite.

Transformadores de intensidad

Transformador de corriente características

 

COMPANIA

Esitaş Elektrik Sanayi ve Ticaret A.Ş. (Istanbul-Türkei)

Como la empresa matriz del grupo con más de 30 años de experiencia en la industria de transformadores de media tensión, produce y vende transformadores de tipo para interiores y exteriores, transformadores Media Tensión en resina fundida en seco, transformadores de tipo de apoyo, barras de distribución, y transformadores de instrumento con capa capacitiva y bujes, transformador de media tensión, transformadores para exteriores bifásicos o monofásicos y transformadores de tipo fusionados, transformadores de corriente de bajo voltaje (barra de distribución, transformador toroidal, transformador de tipo anillo y cable, aisladores epóxicos, Post aislante, bujes y aisladores capacitivos y otros productos diseñados a petición del cliente.

Esitaş Elektrik es distribuidor de muchas autoridades en electricidad alrededor del munfo y de varias sucursales de multinacionales líderes en el mercado en la industria, tales como ABB, GE Schneider, Siemens; así como de fabricantes de páneles de alimentación líderes en mercados locales.

Esitaş Elektrik (Istanbul – Türkei) es distribuidor de muchas autoridades en electricidad alrededor del munfo y de varias sucursales de multinacionales líderes en el mercado en la industria, tales como ABB, GE Schneider, Siemens; así como de fabricantes de páneles de alimentación líderes en mercados locales

PT. Esitas Pacific (Jakarta- INDONESIEN)

Es la planta de producción del grupo localizada en Jakarta, Indonesia con los mismos rangos de productos, fundada para atender a los clientes del área Asia-Pacífico de una manera más conveniente y para garantizar existencias en el mercado mundial

Nuestros transformadores de medida son exportados a más de 60 países en el mercado mundial, incluyendo Francia, España, Suecia, Alemania, Finlandia, Polonia, Italia, Reino Unido, Rusia, Rumania, Bielorrusia, Bulgaria, Hungría, Portugal, Serbia, Lituania, Bosnia y Herzegovina, Estonia, Macedonia, Turquía, Chipre, Azerbaiyán, Afganistán, Bangladesh, Birmania (Myanmar), Camboya, Indonesia, Irán, Iraq, Japón, Jordania, Kirguistán, Kuwait, Líbano, Malasia, Pakistán, Filipinas, Qatar, Arabia Saudita, Singapur, Corea del Sur, Siria, Tailandia, Turkmenistán, Turquía, Vietnam, Yemen, Ecuador, Egipto, Argelia, Marruecos, Australia, Argentina, Bolivia, Chile, Colombia, Costa Rica, Cuba, República Dominicana, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Uruguay, Venezuela.

Con su misión de mejorar continuamente la calidad existente y la introducción de innovaciones para aumentar la eficiencia para los clientes, Grupo Esitaş es su socio en el mercado mundial de la energía.